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We present the results of a numerical investigation of percolation properties in a
version of the classical Heisenberg model. In particular we study the percolation
properties of the subsets of the lattice corresponding to equatorial strips of the
target manifold S2. As shown by us several years ago, this is relevant for the
existence of a massless phase of the model. Our investigation yields strong evi-
dence that such a massless phase does indeed exits. It is further shown that
this result implies lack of asymptotic freedom in the massive continuum limit.
A heuristic estimate of the transition temperature is given which is consistent
with the numerical data.
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1. INTRODUCTION

If one looks at textbooks to learn about the phase diagram of the two
dimensional (2D) O(N) models the situation seems clear: for N=2, there is
a transition to a low temperature phase with only power law decay of
correlations, whereas for the nonabelian case N> 2 there is exponential
decay at all temperatures. But while the first statement has been proven
rigorously a long time ago, (1) the second one remains an open mathematical
question. (2) The standard belief is rooted in the perturbative asymptotic
freedom of the models for N> 2; but over the years we have brought forth
many reasons why we think it is unfounded. (3–5) The absence of a mathe-
matical proof together with ambiguous numerical results left the issue wide
open.



In this paper we would like to present what we regard as convincing
numerical evidence that in fact the 2D O(3) model possesses a massless
phase for sufficiently large b and give a rigorous proof that this is incom-
patible with asymptotic freedom in the massive phase. We will also give a
heuristic explanation of why and where the phase transition happens.

The models we are considering consist of classical spins s taking values
on the unit sphere SN−1, placed at the sites of a 2D regular lattice. These
spins interact ferromagnetically with their nearest neighbors. Let OijP denote
a pair of neighboring sites. We will consider two types of interactions
between neighbouring spins:

• Standard action (s.a.): Hij=−s(i) · s(j)

• Constrained action (c.a.): Hij=−s(i) · s(j) for s(i) · s(j) \ c and
Hij=. for s(i) · s(j) < c for some c ¥ [−1, 1).

The corresponding Gibbs measures are (for a finite lattice) given by

dms.a.=
1
Z
D
OijP

e−bHij D
i
dn(s(i)) (1)

for the standard action and

dmc.a.=
1
Z
D
OijP

[e−bHijh(s(i) · s(j)−c)]D
i
dn(s(i)) (2)

for the constrained action, where dn is the standard measure on the two
sphere S2 and the product <OijP is over nearest neighbors.

Almost a decade ago we showed (6) that one can rephrase the question
of the existence of a soft phase in these models as a percolation problem
and in fact this is the reason we introduced the c.a. model. It should be
noted that the c.a. model shares with the s.a. model not only invariance
under O(N), but has also the same perturbative (=low temperature)
expansion and the same ‘‘smooth’’ classical solutions as the s.a. model. It is
therefore to be expected that the s.a. and c.a. models fall in the same uni-
versality class (possess the same continuum limit) and, as we shall show
shortly, the numerical evidence supports this expectation. The advantage of
studying the c.a. model stems from the following fact: let Ec=`2(1−c)
and SEc the set of sites such that |s · n| < Ec/2 for some given unit vector n.
Our rigorous result (6) was that if for some E > Ec the set SE on the triangular
(T) lattice does not contain a percolating cluster, then the O(N) model
must be massless at that c. For the abelian O(2) model we could prove the
absence of percolation of this equatorial set SEc for c sufficiently large (6)

(modulo certain technical assumptions which were later eliminated by
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M. Aizenman (7)). For the nonabelian cases we could not give a rigorous
proof. We did however present certain arguments (8, 9) explaining why the
percolating scenario seemed unlikely.

In this paper we will present numerical evidence that there exists an E0
such that for E [ E0 SE does not percolate for any c; for sufficiently large c
this E0 will be larger than Ec and the model will thus be massless. We will
also show that due to a rigorous inequality derived by us in the past, (10) the
existence of a finite bcrt in the s.a. model on the square (S) lattice is
incompatible with the presence of asymptotic freedom in the massive con-
tinuum limit of the model.

2. PERCOLATION AND MASSLESSNESS

In this section we briefly review the special features of percolation in two
dimensions and give a brief sketch of our argument relating percolation
properties to the absence of a mass gap. We restrict the discussion to the T
lattice; this keeps the arguments simpler because the T lattice is self-matching
and no distinction has to be made between connectedness and a-connected-
ness (where points are also considered connected along diagonals).

The following two facts special to 2D are relevant for our discussion:

1. Noncoexistence of disjoint percolating sets: Let A be the subset of
the lattice defined by the spin lying in some subset A … SN−1 and Ã its
complement. Then with probability 1 A and Ã do not percolate at the same
time. This has been proven rigorously only for special cases like Bernoulli
percolation and the + and − clusters of the Ising model, but is believed to
hold quite generally. (Aizenman (7) showed that in the case of O(2) one does
not need to invoke this principle).

2. Russo’s lemma (11): If neither A nor its complement Ã percolate,
then the expected size of the cluster of A attached to the origin, denoted by
OAP, diverges; the same holds for its complement Ã. (In this simple form
the lemma only holds for a self matching lattice like the T lattice). If Ã
percolates, then OAP is expected to be finite.

The subsets of the sphere S2 that interest us here are the following:

• ‘‘equatorial strip’’ SE, defined by |s · n| < E/2 for some fixed unit
vector n.

• ‘‘upper polar cap’’ P+E , defined by s · n \ E/2,

• ‘‘lower polar cap’’ P−
E , defined by s · n [ − E/2.

• ‘‘union of polar caps’’ PE=P+E 2P−
E .
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The subsets of the lattice defined by these subsets of the sphere we denote
by the corresponding roman letters SE etc. and for brevity we say ‘‘a certain
subset of the sphere percolates’’ instead of ‘‘the subset of the lattice induced
by a certain subset of the sphere percolates’’ etc.

According to the discussion above, there are the following possibilities:
either SE percolates, or PE percolates, or neither SE nor PE percolates and
then both have divergent mean size (we shall call this third possibility in
short formation of rings).

Let us now briefly review our argument (6) that relates percolation
properties to the absence of a mass gap. Our statement was that if there
was an equatorial strip SE that did not percolate for a certain c > 1− E2/2,
there could be no mass gap in the system.

The argument is based on the imbedded Ising variables si — sgn(s(i)).
Using these variables, the s.a. Hamiltonian becomes:

Hij=−sisj |s||(i) s||(j)|−s+(i) · s+(j) (3)

where s||(i)=s(i) · n and s+(i)=n×(s(i)×n). The c.a. model can be
similarly described in terms of the variables si, |s||(i)| and s+(i). In both
models one thus obtains an induced Ising model for which the Fortuin–
Kastleyn (FK) representation (12) is applicable. In this representation the
Ising system is mapped into a bond percolation problem: In the s.a. model
a bond is placed between any like neighboring Ising spins with probability
p=1− exp(−2bs||(i) s||(j)). For the c.a. model a bond is also placed if after
flipping one of the two neighboring Ising spins the constraint s(i) · s(j) \ c
is violated. From the FK representation is follows that the mean cluster
size of the site clusters joined by occupied bonds (FK-clusters) is equal to
the Ising magnetic susceptibility. In a massive phase the latter must remain
finite. Hence, if the FK-clusters have divergent mean size, the original O(3)
ferromagnet must be massless (the Ising variables s are local functions of
the originally spin variables s).

Now notice that by construction for the c.a. model the FK-clusters
with, say, s=+1 must contain all sites with s(i) · n >`(1−c)/2 . There-
fore the model must be massless if clusters obeying this condition have
divergent mean size. But the polar set PE consists of the two disjoint com-
ponents P+E and P−

E . For c > 1− E2/2 there are no clusters containing
elements of both P+E and P−E . Hence if for such values of c clusters of PE
form rings, so do clusters of P+E separately and the O(3) model must be
massless by the argument just given.

If we want to study the percolation or absence of percolation of the set
A corresponding to a subset A … SN−1 of positive measure numerically, we
have to consider a sequence of tori of increasing size L. On these tori we

814 Patrascioiu and Seiler



measure the mean cluster size of of A. If A percolates in the thermody-
namic limit, by translation invariance OAP=O(L2); if its complement per-
colates OAP should approach a finite nonzero value, and if A forms rings
we expect OAP=O(L2−g) for some g > 0. Therefore, if we define the ratio

r=OPEP/OSEP, (4)

for LQ. it should either go to 0 if SE percolates or to . if PE percolates;
if neither SE nor PE percolates, then both form rings and the ratio r could
diverge, go to 0 or approach some finite, nonzero value depending upon
the value of the critical index g for the two types of clusters.

In the next section we will describe what our numerical simulations tell
us about the percolation properties of equatorial strips and polar caps.

3. MAIN NUMERICAL RESULTS

Our results were obtained from a Monte Carlo (MC) investigation
using an O(3) version of the Swendsen–Wang cluster algorithm (13) and
consist of a minimum of 20,000 lattice configurations used for taking mea-
surements. For each value of E we studied L=160, 320 and 640 (for
E=0.78 we also studied L=1280).

In Fig. 1 we show the numerical value of the ratio r as function of c
for b=0 for four values of E for the c.a. model on a T lattice. Three dis-
tinct regimes are manifest for each of the four values of E investigated:

• For small c, r is increasing with L, presumably diverging to .
(region 1).

• For intermediate c, r is decreasing with L, presumably converging to
0 (region 2).

• For c sufficiently large depending upon E, r shows a very mild
dependence upon L.

The only sensible interpretation of these facts is that for these values
of E for small c (region 1) PE percolates, for intermediate c (region 2) SE
percolates and for sufficiently large c both PE and SE form rings with quite
similar (possibly equal) values of g.

Of course, it would be logically possible that also in regions 1 and 2
both sets form rings, but with drastically different critical index g. This is
highly implausible, as will be explained, but more importantly, it would be
irrelevant for our main conclusion, which is that there is a nonvanishing
threshold E0 such that for E < E0 SE never percolates. Ring formation in
Region 1 is implausible, because this region is contiguous to the part of the
axis c=−1 (Bernoulli percolation) in which PE is known to percolate for
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Fig. 1. Ratio OPEP/OSEP for various E values versus c.

E < 1. In Region 2 ring formation is implausible because of the strong L
dependence of r which is seen there.

Our data allow to deduce a semiquantitative ‘‘phase diagram’’ in the
(c, E)-plane of the percolation problem induced by the c.a. model on the T
lattice for b=0.

This is shown in Fig. 2. The solid line C is the curve c=1− E2/2;
above that line the two polar caps cannot touch and therefore their union
cannot percolate. The dashed line D represents the minimal equatorial
width above which SE percolates. The point T at the intersection of the
curves D and C gives an upper bound for ccrt, the value of c above which
the c.a. model is massless.

Let us explain how this picture was obtained: since for c=−1 (no
constraint) the model reduces to independent site percolation, for which the
percolation threshold is known rigorously to be E=1, curve D has to start
at E=1. With increasing c that threshold shifts to smaller values of E. Four
points of the dashed line are in fact determined by the data displayed in
Fig. 1: the clearly identifiable four points where the lines for different
lattice sizes L cross and the ratio r becomes independent of L determine the
percolation threshold for the chosen value of E and so determine a point of
the dashed line D.
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Fig. 2. Phase diagram of the O(3) model on the T lattice.

Two features of this diagram are worth emphasizing:

1. An equatorial strip of width less than approximately E=0.76 never
percolates.

2. In Fig. 1 for approximately c > 0.4 a range of E’s appears such
that the ratio r again becomes approximately independent of L. This is
signalling the appearance of a new ‘‘phase’’ in which both SE and PE form
rings (the dotted line separates it from the region of percolation of PE).

This regime of ring formation of both SE and PE is lying between the
dotted and the dashed lines in Fig. 2. Our data give strong evidence of its
existence, but they do not determine in detail where the boundaries are.
The dotted line has to run to E=0 for c=1 because below it there is per-
colation of PE, and this is not possible above the solid line C E=Ec (because
it would conflict with the principle of non-coexistence of disjoint percolating
sets). We drew the dashed line into upper right corner because we expect
that eventually, for c approaching 1, any polar cap will start forming rings,
thereby preventing percolation of the corresponding equatorial strips.

But what it is essential for our conclusion that there is a massless
phase is only that there is a regime below the dashed line D and above the
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solid line C, in which SE does not percolate and the two polar caps do not
touch. In other words, the lines C and D have to cross (the crossing point
is denoted by T in Fig. 2). Since we found that for E < E0=0.76 SE never
percolates, this means that for c \ cE0=0.71 the model is massless. In fact
the massless phase must start earlier, and for instance based on our data we
estimate that at c=0.61 the c.a. model is already massless.

In the next section we will further corroborate the fact that for
E < 0.76 the equatorial strip does not percolate for any c.

We would like to comment briefly on another recent paper dealing
with percolation properties of equatorial strips in the O(3) model: Allès
et al. (14) published a study showing that for E=1.05 and b=2.0 in the s.a.
model SE percolates. Although strictly speaking our percolation argument
applies only to the c.a. model, the result of Allès et al is not surprising since
at b=2.0 the s.a. model is clearly in its massive phase, (15) hence, by
analogy with what happens in the c.a. model, one would expect that clus-
ters of a sufficiently wide equatorial strip percolate (see ref. 16). The real
issue, which the authors of ref. 14 did not seem to appreciate, is whether in
the c.a. model clusters of the equatorial strip SEc continue to percolate for c
sufficiently close to 1. The numerics presented in Fig. 1 suggest that that is
not the case.

4. CORROBORATING NUMERICS

To corroborate our most important result, namely that for approxi-
mately E < 0.76 SE does not percolate for any value of c, we also measured
(at b=0) the ratio of the mean cluster size of the set P+EŒ with EŒ=0.5 to
that of the set SE with E=0.75 (EŒ was chosen so that P+EŒ has equal density
with SE). The results are shown in Fig. 3. This figure shows that for c less
than about 0.4 (and greater than 0) the ratio grows very rapidly with L,
indicating that P+EŒ forms rings while SE has finite mean size; this region
terminates around c=0.4, where presumably also SE starts forming rings,
and the dependence of the ratio upon L becomes much milder. Since for
c > 0.4 the ratio continues to grow with L, at equal density, clusters of the
polar cap are larger than those of the equatorial strip. The larger average
cluster size of the polar cap compared to the strip of the same area is pro-
bably due to the fact that the strip has a larger boundary than the polar
cap. This is in agreement with a general conjecture stated in ref. 8, namely
that for c sufficiently large, if two sets have equal area but different perime-
ters, the one with the smaller perimeter will eventually, for c approaching 1,
have larger average cluster size. For the case at hand, this is apparently true
for all values of c.
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Fig. 3. The ratio of the mean cluster size of a polar cap of height 0.75 to that of an equa-
torial strip of the same height.

5. COMPARISON TO THE O(2) MODEL

The general belief, which we criticized in ref. 4, is that there is a fun-
damental difference between abelian and nonabelian models. To test this
belief we also studied the ratio r for the c.a. O(2) model on the T lattice.
The phase diagram is shown in Fig. 4. Since in the O(2) model the set PE
can also be regarded as a set SẼ where Ẽ=`4− E2 , certain features of that
diagram follow from rigorous arguments. For instance it is clear that in the
c.a. model there exist two intersecting curves C and C̃ and in the region to
their right the model must be massless. (6, 7) The precise location of the
curves D (or D̃) must be determined numerically, something which we did
not do. We did verify though that the ring formation region begins around
c=−0.5.

6. TEST OF UNIVERSALITY

In our opinion the arguments and numerical evidence provided so far
give strong indications that the c.a.O(3)model on the T lattice has a massless
phase. Universality would suggest that a similar situation must exist for the

Percolation and the Existence of a Soft Phase 819



Fig. 4. The phase diagram for theO(2)model on the T lattice.

s.a. models on the T and S lattices. To test universality we measured on the S
and T lattices the renormalized coupling both on thermodynamic lattices in
the massive phase and in finite volume in the presumed critical regime (as in
ref. 17). Our data for the c.a. model on the S lattice only determine an
interval (about 0.5 to 0.7) in which the massless phase of the model sets in;
we tried to see if we could get a similar L dependence for the renormalized
coupling in the s.a. model on the S lattice at a suitable b as for c=0.61 in
the c.a. model at b=0 on the T lattice. This seems to be indeed the case for
b roughly 3.4. We went only up to L=640, hence this equivalence between
c and b should be considered only as a rough approximation, but there
seems to be no doubt that the two models have the same continuum limit.

We also compared the step scaling curve in the s.a. and c.a. models.
The step scaling curve is obtained as follows: on a periodic lattice of size
L×L we define an apparent correlation length t(L). Namely let P=(p, 0),
p=2np

L , n=0, 1, 2,..., L−1. Then define

t(L)=
`3

4 sin(p/L)
`G(0)/G(1)−1 (5)
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where

G(p)=
1
L2

O|ŝ(P)|2P; ŝ(P)=C
x
e iPxs(x) (6)

Leaving b respectively c fixed, one doubles L and measures also t(2L). The
step scaling function gives the ratio 2t(L)/t(2L) versus L/t(L). In the
continuum limit (LQ. and bQ bcrt at L/t(L) fixed), this procedure
produces a unique curve characterizing the universality class of the model.
In Fig. 5 we present the step scaling function for the c.a. and s.a. models.
The data were produced by adjusting b and c so that at L=20 we obtain
roughly the same t(L) in the two models. After that, leaving b respectively
c fixed, L was doubled until L=320. As can be seen, the two step scaling
curves agree reasonably well; the slight disagreement is probably due to the
fact that the two curves have to agree only in the continuum limit (tQ.),
i.e., they have different lattice artefacts, whereas the largest value of t
reached was only approximately 35 lattice units.

Fig. 5. The step scaling curves of the s.a. on the S lattice and c.a. O(3) model on the T
lattice.
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7. HEURISTIC EXPLANATION OF THE TRANSITION

It is intersting to note that there is a heuristic explanation for both the
existence of a massless phase in the s.a. O(3) model and for the value of
bcrt. Indeed it is known rigorously that in 2D a continuous symmetry
cannot be broken at any finite b. In a previuos paper (5) we showed that the
dominant configurations at large b are not instantons but superinstantons
(s.i.). In principle both instantons and s.i. could enforce the O(3) symme-
try. In a box of diameter R the former have a minimal energy Einst=4p (18)

while the latter Es.i.=d2p/ln R, where d is the angle by which the spin has
rotated over the distance R. Now suppose that bcrt is sufficiently large
for classical configurations to be dominant. Then let us choose d=2p
(restoration of symmetry) and ask how large must R be so that the
superinstanton configuration has the same energy as one instanton. One
finds ln R=p2. But in the Gaussian approximation

Os(0) · s(x)P % 1−
1
bp

ln x (7)

Thus restoration of symmetry occurs for ln x % pb. This simpleminded
argument suggests that for b \ p instantons become less important than s.i.
Now in a gas of s.i. the image of any small patch of the sphere forms rings,
hence the system is massless. While this is not a quantitative argument, we
believe it captures qualitatively what happens: a transition from localized
defects (instantons) to super-instantons.

8. ABSENCE OF ASYMPTOTIC FREEDOM

As explained in Section 2, the constraint model is attractive because it
simplifies greatly the connection between the percolation properties of
certain subsets of S2 and the existence of exponential decay in the O(3)
model. But the constraint model does not possess reflection positivity,
which allowed us to prove certain inequalities, to be discussed below, for
the standard action model. Due to these bounds, in the standard action
model the existence of a finite bcrt is incompatible with the presence of
asymptotic freedom (AF) in the massive continuum limit, as will be shown
shortly. In order to use this information for the constraint model, we
verified numerically in Section 6 that the two models lie in the same uni-
versality class and that c % 0.61 corresponds roughly to b % 3.4.

Next let us discuss the connection between a finite bcrt and the absence
of asymptotic freedom in the standard action model on the S lattice. It
follows from our earlier work concerning the conformal properties of the
critical O(2) model. (10) We refer the reader for details to that paper and give
only an outline of the argument. The s.a. lattice O(N) model possesses an
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isotensor multiplet of conserved isospin currents. Each of these currrents
can be decomposed into a transverse and longitudinal part. Let FT(p, b) and
FL(p, b) denote the thermodynamic values of the 2-point functions of the
transverse and longitudinal parts at momentum p, respectively. Using
reflection positivity and a Ward identity we proved that in the massive
continuum limit the following inequalities must hold for any p ] 0:

0 [ FT(p, b) [ FT(0, b)=FL(0, b) [ FL(p, b)=2bE/N (8)

Here E is the expectation value of the energy

E=Os(i) · s(j)P

at inverse temperature b. Since E [ 1 it follows that if bcrt <., this gives a
absolute upper and lower bounds on the current two point functions; these
bounds remain valid in the massive continuum limit, because a conserved
Noether current does neither require nor allow any field strength renor-
malization. Hence FT(0, bcrt)−FT(p, bcrt), which converges to the conti-
nuum transverse current 2-p function, cannot diverge for pQ. as
required by perturbative asymptotic freedom. (19) In fact, for bcrt=3.4
(which is a reasonable guess) FT(p) must be less than 2.27, in violation of
the form factor computation giving FT(0)−FT(.) > 3.651. (20)

9. CONCLUDING REMARKS

Since the implications of our result, that for the c.a. model a suffi-
ciently narrow equatorial strip never percolates, are so dramatic, the reader
may wonder how credible are the numerics. The only debatable point is
whether our results represent the true thermodynamic behaviour for LQ.

or are merely small volume artefacts. While we cannot rule out rigorously
the latter possibility, certain features of the data make it highly implausible:

• Small volume effects should set in gradually, while the data in Fig. 1
indicate a rather abrupt change from a region where r is decreasing with L
to one where r is essentially independent of L.

• For cQ 1 at fixed L, r must approach the ‘‘geometric’’ value
r=2/E−1. As can be seen, in all the cases studied, throughout the ‘‘ring’’
region r is clearly larger than this value, while it should go to 0 if SE per-
colated.

• In Fig. 3 there is no indication of the ratio going to 0 for increasing
L. Moreover the dramatic change in slope around c=0.4 indicates that the
polar cap PEŒ starts forming rings at a smaller value of c than the equatorial
strip SE.
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We have additional numerical evidence that clusters of a polar cap P+E
smaller than a hemisphere (s · n > E/2 > 0) form rings for some c < 1.
Namely we investigated the case E=0.1. For the the case c=−1 (Bernoulli
percolation) it is known rigorously that clusters of this set have finite mean
size. As can be seen from Fig. 6 our numerical values at c=−1 corro-
borate this fact. In the same figure we show the mean cluster size of cluster
of P+0.1 at c=0, where the correlation length is approximately 53 lattice
units. Even though we increased L up to 1280, the mean cluster size shows
no sign of leveling off, growing in fact like some power of L, consistent
with the formation of rings.

Therefore there is good numerical evidence that for c=0, where we
can reach the thermodynamic limit, clusters of this polar cap form rings.
The natural expectation would be that the mean cluster size of a subset of a
hemisphere is a nondecreasing function of c. This is borne out by the
numerics, as shown in Fig. 7. There we represent the mean cluster size of
P+0.1 at fixed L=640 function of c. The data support the assertion that for
any c > 0 the mean size of the clusters of P+0.1 diverges, which, via our
argument, implies that the c.a. model must cease being massive for some
c < 1.

Fig. 6. Mean size of clusters of the polar cap P+0.1 at c=−1 (Bernoulli) and at c=0 versus
L. The correlation length t is approximately 53 lattice units.
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Fig. 7. Mean size of clusters of the polar cap P+0.1 at L=640 versus c.

Thus we doubt very much that the effects we are seeing represent small
volume artefacts. Moreover, if sz, the z-component of the spin s remained
massive at low temperature and in fact an arbitrarily narrow equatorial
strip percolated, one would have to explain away our old paradox: (8, 9) if
such a narrow strip percolated, an even larger strip would percolate and on
it one would have an induced O(2) model in its massless phase, in contra-
diction to the Mermin–Wagner theorem.

Consequently it seems unavoidable to conclude that the phase diagram
in Fig. 2 represents the truth, that a soft phase exists both in the s.a. and
the c.a. model and that the massive continuum limit of the O(3) model is
not asymptotically free. In a previous paper (5) we have already shown that
in nonabelian models even at short distances perturbation theory produces
ambiguous answers. The present result sharpens that result by eliminating
the possibility of asymptotic freedom in the massive continuum limit.
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